Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of Glycine max.

Identifieur interne : 000848 ( Main/Exploration ); précédent : 000847; suivant : 000849

Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of Glycine max.

Auteurs : Andrew Wagner [États-Unis] ; Stephen Norris [États-Unis] ; Payel Chatterjee [États-Unis] ; Paul F. Morris [États-Unis] ; Hans Wildschutte [États-Unis]

Source :

RBID : pubmed:29896163

Abstract

Seedling root rot of soybeans caused by the host-specific pathogen Phytophthora sojae, and a large number of Pythium species, is an economically important disease across the Midwest United States that negatively impacts soybean yields. Research on biocontrol strategies for crop pathogens has focused on compounds produced by microbes from soil, however, recent studies suggest that aquatic bacteria express distinct compounds that efficiently inhibit a wide range of pathogens. Based on these observations, we hypothesized that freshwater strains of pseudomonads might be producing novel antagonistic compounds that inhibit the growth of oomycetes. To test this prediction, we utilized a collection of 330 Pseudomonas strains isolated from soil and freshwater habitats, and determined their activity against a panel of five oomycetes: Phytophthora sojae, Pythium heterothalicum, Pythium irregulare, Pythium sylvaticum, and Pythium ultimum, all of which are pathogenic on soybeans. Among the bacterial strains, 118 exhibited antagonistic activity against at least one oomycete species, and 16 strains were inhibitory to all pathogens. Antagonistic activity toward oomycetes was significantly more common for aquatic isolates than for soil isolates. One water-derived strain, 06C 126, was predicted to express a siderophore and exhibited diverse antagonistic profiles when tested on nutrient rich and iron depleted media suggesting that more than one compound was produced that effectively inhibited oomycetes. These results support the concept that aquatic strains are an efficient source of compounds that inhibit pathogens. We outline a strategy to identify other strains that express unique compounds that may be useful biocontrol agents.

DOI: 10.3389/fmicb.2018.01007
PubMed: 29896163
PubMed Central: PMC5986895


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of
<i>Glycine max</i>
.</title>
<author>
<name sortKey="Wagner, Andrew" sort="Wagner, Andrew" uniqKey="Wagner A" first="Andrew" last="Wagner">Andrew Wagner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norris, Stephen" sort="Norris, Stephen" uniqKey="Norris S" first="Stephen" last="Norris">Stephen Norris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Payel" sort="Chatterjee, Payel" uniqKey="Chatterjee P" first="Payel" last="Chatterjee">Payel Chatterjee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morris, Paul F" sort="Morris, Paul F" uniqKey="Morris P" first="Paul F" last="Morris">Paul F. Morris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wildschutte, Hans" sort="Wildschutte, Hans" uniqKey="Wildschutte H" first="Hans" last="Wildschutte">Hans Wildschutte</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29896163</idno>
<idno type="pmid">29896163</idno>
<idno type="doi">10.3389/fmicb.2018.01007</idno>
<idno type="pmc">PMC5986895</idno>
<idno type="wicri:Area/Main/Corpus">000743</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000743</idno>
<idno type="wicri:Area/Main/Curation">000743</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000743</idno>
<idno type="wicri:Area/Main/Exploration">000743</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of
<i>Glycine max</i>
.</title>
<author>
<name sortKey="Wagner, Andrew" sort="Wagner, Andrew" uniqKey="Wagner A" first="Andrew" last="Wagner">Andrew Wagner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norris, Stephen" sort="Norris, Stephen" uniqKey="Norris S" first="Stephen" last="Norris">Stephen Norris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chatterjee, Payel" sort="Chatterjee, Payel" uniqKey="Chatterjee P" first="Payel" last="Chatterjee">Payel Chatterjee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morris, Paul F" sort="Morris, Paul F" uniqKey="Morris P" first="Paul F" last="Morris">Paul F. Morris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wildschutte, Hans" sort="Wildschutte, Hans" uniqKey="Wildschutte H" first="Hans" last="Wildschutte">Hans Wildschutte</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Seedling root rot of soybeans caused by the host-specific pathogen
<i>Phytophthora sojae</i>
, and a large number of
<i>Pythium</i>
species, is an economically important disease across the Midwest United States that negatively impacts soybean yields. Research on biocontrol strategies for crop pathogens has focused on compounds produced by microbes from soil, however, recent studies suggest that aquatic bacteria express distinct compounds that efficiently inhibit a wide range of pathogens. Based on these observations, we hypothesized that freshwater strains of pseudomonads might be producing novel antagonistic compounds that inhibit the growth of oomycetes. To test this prediction, we utilized a collection of 330
<i>Pseudomonas</i>
strains isolated from soil and freshwater habitats, and determined their activity against a panel of five oomycetes:
<i>Phytophthora sojae, Pythium heterothalicum, Pythium irregulare, Pythium sylvaticum</i>
, and
<i>Pythium ultimum</i>
, all of which are pathogenic on soybeans. Among the bacterial strains, 118 exhibited antagonistic activity against at least one oomycete species, and 16 strains were inhibitory to all pathogens. Antagonistic activity toward oomycetes was significantly more common for aquatic isolates than for soil isolates. One water-derived strain, 06C 126, was predicted to express a siderophore and exhibited diverse antagonistic profiles when tested on nutrient rich and iron depleted media suggesting that more than one compound was produced that effectively inhibited oomycetes. These results support the concept that aquatic strains are an efficient source of compounds that inhibit pathogens. We outline a strategy to identify other strains that express unique compounds that may be useful biocontrol agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29896163</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of
<i>Glycine max</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1007</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2018.01007</ELocationID>
<Abstract>
<AbstractText>Seedling root rot of soybeans caused by the host-specific pathogen
<i>Phytophthora sojae</i>
, and a large number of
<i>Pythium</i>
species, is an economically important disease across the Midwest United States that negatively impacts soybean yields. Research on biocontrol strategies for crop pathogens has focused on compounds produced by microbes from soil, however, recent studies suggest that aquatic bacteria express distinct compounds that efficiently inhibit a wide range of pathogens. Based on these observations, we hypothesized that freshwater strains of pseudomonads might be producing novel antagonistic compounds that inhibit the growth of oomycetes. To test this prediction, we utilized a collection of 330
<i>Pseudomonas</i>
strains isolated from soil and freshwater habitats, and determined their activity against a panel of five oomycetes:
<i>Phytophthora sojae, Pythium heterothalicum, Pythium irregulare, Pythium sylvaticum</i>
, and
<i>Pythium ultimum</i>
, all of which are pathogenic on soybeans. Among the bacterial strains, 118 exhibited antagonistic activity against at least one oomycete species, and 16 strains were inhibitory to all pathogens. Antagonistic activity toward oomycetes was significantly more common for aquatic isolates than for soil isolates. One water-derived strain, 06C 126, was predicted to express a siderophore and exhibited diverse antagonistic profiles when tested on nutrient rich and iron depleted media suggesting that more than one compound was produced that effectively inhibited oomycetes. These results support the concept that aquatic strains are an efficient source of compounds that inhibit pathogens. We outline a strategy to identify other strains that express unique compounds that may be useful biocontrol agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wagner</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Norris</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chatterjee</LastName>
<ForeName>Payel</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morris</LastName>
<ForeName>Paul F</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wildschutte</LastName>
<ForeName>Hans</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R15 GM124585</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Pseudomonas</Keyword>
<Keyword MajorTopicYN="N">antagonistic</Keyword>
<Keyword MajorTopicYN="N">biocontrol</Keyword>
<Keyword MajorTopicYN="N">biosynthetic gene cluster</Keyword>
<Keyword MajorTopicYN="N">oomycete</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29896163</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2018.01007</ArticleId>
<ArticleId IdType="pmc">PMC5986895</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2015 Aug 28;10(8):e0136241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Jul;8(7):e1002784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22792073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:403-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1989 Aug;33(8):1358-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2508545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Am J Med Sci. 2011 Aug;3(8):367-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22171244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Jan;63(2):417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D332-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jul;7(7):e1002132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21799664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013 Aug 20;4(4):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2010 Jun 29;1(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharm. 2008 Mar-Apr;5(2):191-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18217713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Feb;9(2):425-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Aug;7(8):1632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23552624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Jan;13(1):265-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20819104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 23;6:1295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2014 Apr;60(4):217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24693980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2003;95(4):814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12969296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jan 25;14:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23350846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 May;86(6):1659-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20352425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2017 Jun;6(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28110506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Jun;12(6):1513-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Sci (China). 2009;21 Suppl 1:S28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25084426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:85-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2016 Nov 15;24(22):5884-5894</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27692769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Nov 27;6:1309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26640460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2014 Jun;54:89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24875126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Mar;10(3):778-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18237310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20629700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Sep 7;337(6099):1228-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 May;189(9):3425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Dec 30;83(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27881418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Sci Food Agric. 2013 Feb;93(3):568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D560-D565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27903896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Feb;81(3):821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korean J Food Sci Anim Resour. 2014;34(5):614-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26761495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2017 Mar;107(3):280-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2016 Jan 28;4(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26823582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Jul 07;6:693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26217324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 2000 Feb 1;26(2-4):304-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10689092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2016 Feb;33(2):348-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26758451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2015 Jun 16;49(12):7197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25992592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27095192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Wagner, Andrew" sort="Wagner, Andrew" uniqKey="Wagner A" first="Andrew" last="Wagner">Andrew Wagner</name>
</region>
<name sortKey="Chatterjee, Payel" sort="Chatterjee, Payel" uniqKey="Chatterjee P" first="Payel" last="Chatterjee">Payel Chatterjee</name>
<name sortKey="Morris, Paul F" sort="Morris, Paul F" uniqKey="Morris P" first="Paul F" last="Morris">Paul F. Morris</name>
<name sortKey="Norris, Stephen" sort="Norris, Stephen" uniqKey="Norris S" first="Stephen" last="Norris">Stephen Norris</name>
<name sortKey="Wildschutte, Hans" sort="Wildschutte, Hans" uniqKey="Wildschutte H" first="Hans" last="Wildschutte">Hans Wildschutte</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29896163
   |texte=   Aquatic Pseudomonads Inhibit Oomycete Plant Pathogens of Glycine max.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29896163" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024